首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1919篇
  免费   29篇
  国内免费   287篇
化学   1131篇
晶体学   31篇
力学   311篇
综合类   2篇
数学   32篇
物理学   728篇
  2024年   2篇
  2023年   29篇
  2022年   42篇
  2021年   52篇
  2020年   99篇
  2019年   45篇
  2018年   34篇
  2017年   109篇
  2016年   106篇
  2015年   85篇
  2014年   91篇
  2013年   139篇
  2012年   90篇
  2011年   177篇
  2010年   132篇
  2009年   137篇
  2008年   123篇
  2007年   146篇
  2006年   118篇
  2005年   60篇
  2004年   57篇
  2003年   61篇
  2002年   59篇
  2001年   41篇
  2000年   22篇
  1999年   31篇
  1998年   30篇
  1997年   14篇
  1996年   11篇
  1995年   13篇
  1994年   12篇
  1993年   14篇
  1992年   13篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   8篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有2235条查询结果,搜索用时 203 毫秒
1.
The electrochemical behavior of austenitic stainless steel (Type 304) in 3 M sulfuric acid with 3.5% recrystallized sodium chloride at specific concentrations of butan-1-ol was investigated with the aid of potentiodynamic polarization, open circuit measurement and weight loss technique. Butan-1-ol effectively inhibited the steel corrosion with a maximum inhibition efficiency of 78.7% from weight-loss analysis and 80.9% from potentiodynamic polarization test at highest concentration studied. Adsorption of the compound obeyed the Freundlich isotherm. Thermodynamic calculations reveal physiochemical interactions and spontaneous adsorption mechanism. Surface characterizations showed the absence of corrosion products and topographic modifications of the steel. Statistical analysis depicts the overwhelming influence and statistical significance of inhibitor concentration on the inhibition performance.  相似文献   
2.
《Comptes Rendus Mecanique》2019,347(8):601-614
During machining processes, materials undergo severe deformations that lead to different behavior than in the case of slow deformation. The microstructure changes, as a consequence, affect the materials properties and therefore influence the functionality of the component. Developing material models capable of capturing such changes is therefore critical to better understand the interaction process–materials. In this paper, we introduce a new physics model associating Mechanical Threshold Stress (MTS) with Dislocation Density (DD) models. The modeling and the experimental results of a series of large strain experiments on polycrystalline copper (OFHC) involving sequences of shear deformation and strain rate (varying from quasi-static to dynamic) are very similar to those observed in processes such as machining. The Kocks–Mecking model, using the mechanical threshold stress as an internal state variable, correlates well with experimental results and strain rate jump experiments. This model was compared to the well-known Johnson–Cook model that showed some shortcomings in capturing the stain jump. The results show a high effect of rate sensitivity of strain hardening at large strains. Coupling the mechanical threshold stress dislocation density (MTS–DD), material models were implemented in the Abaqus/Explicit FE code. The model shows potentialities in predicting an increase in dislocation density and a reduction in cell size. It could ideally be used in the modeling of machining processes.  相似文献   
3.
As we enter the age of designer matter — where objects can morph and change shape on command — what tools do we need to create shape-shifting structures? At the heart of an elastic deformation is the combination of dilation and distortion or stretching and bending. The competition between the latter can cause elastic instabilities, and over the last fifteen years, these instabilities have provided a multitude of ways to prescribe and control shape change. Buckling, wrinkling, folding, creasing, and snapping have become mechanisms that when harmoniously combined enable mechanical metamaterials, self-folding origami, ultralight and ultrathin kirigami, and structures that appear to grow from one shape to another. In this review, I aim to connect the fundamentals of elastic instabilities to the advanced functionality currently found within mechanical metamaterials.  相似文献   
4.
This study explores the effects of 3-glycidoxypropyltrimethoxysilane (3-GPTS) modified Na-montmorillonite (Na-Mt) nanoclay addition on mechanical response of unidirectional basalt fiber (UD-BF)/epoxy composite laminates under tensile, flexural and compressive loadings. Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and simultaneous thermal analysis (STA) data confirmed the reaction mechanism between the silane compound and Mt. It was demonstrated that addition of 5 wt % 3-GPTS/Mt resulted in 28%, 11% and 35% increase in flexural, tensile and compressive strengths. Scanning electron microscopy (SEM) clarified the improvement in the adhesion between the basalt fibers and matrix in the case of Mt-enhanced epoxy specimens. Also, a theoretical route based on a Euler-Bernoulli beam-based approach was employed to estimate the compressive properties of the composites. The results demonstrated good agreement between theoretical and experimental approaches. Totally, the results of the study show that matrix modification is an effective strategy to improve the mechanical behavior of fibrous composites.  相似文献   
5.
The production of ligno-cellulosic biomass-based composites requires the development of new methodologies to evaluate the reinforcement potential of a given biomass, such as miscanthus studied in the work. Miscanthus stems from thirteen genotypes were broken into elongated fragments and mixed with polypropylene composites in an internal mixer. The aim is to find the best protocol able to discriminate miscanthus genotypes for their reinforcement capability. The following process parameters were optimized in order to maximize the reinforcement effect of the stem fragment filler: mixing parameters (mixing time, rotor speed and chamber temperature), temperature, fragment content, size and length distributions and coupling agent. The relationship between the process parameters and the mechanical properties of composites were analyzed to evaluate the influence of genotype on reinforcement performance, showing the robustness of the protocol in effectively discriminating genotypes according to their reinforcing capacity.  相似文献   
6.
运用分子动力学(MD)方法,选择凝聚态分子势能优化力场(COMPASS),对六硝基六氮杂异伍兹烷(ε-CL-20)、2,4,6-三硝基甲苯(TNT)晶体及其等摩尔比的CL-20/TNT混合炸药和共晶炸药进行不同温度下恒定粒子数等压等温(NPT)系综模拟研究.结果表明,CL-20/TNT共晶的内聚能密度(CED)和结合能随温度的升高逐渐减小;共晶的CED比混合炸药的大,结合能是混合炸药的2倍多,预示其稳定性明显增强.对相关函数和局部放大结构显示共晶中组分分子间作用主要来自TNT中H和CL-20中O以及CL-20中H和TNT中O之间形成的氢键.通过波动法求得的弹性力学性能结果表明,CL-20/TNT共晶的拉伸模量(E)、体积模量(K)和剪切模量(G)介于ε-CL-20和TNT晶体之间,且随温度的升高而下降,符合一般预期;但共晶炸药的柯西压(C12-C44,Cij弹性系数)、K/G和泊松比(ν)均比其组分炸药ε-CL-20和TNT高得多,预示该共晶具有异常高的延展性和弹性伸长,主要是二组分呈层状交替排列且之间存在较强相互作用所致.  相似文献   
7.
Popgraphene (PopG) is a new 2D planar carbon allotrope which is composed of 5–8–5 carbon rings. PopG is intrinsically metallic and possesses excellent thermal and mechanical stability. In this work, we report a detailed study of the thermal effects on the mechanical properties of PopG membranes using fully-atomistic reactive (ReaxFF) molecular dynamics simulations. Our results showed that PopG presents very distinct fracture mechanisms depending on the temperature and direction of the applied stretching. The main fracture dynamics trends are temperature independent and exhibit an abrupt rupture followed by fast crack propagation. The reason for this anisotropy is due to the fact that y-direction stretching leads to a deformation in the shape of the rings that cause the breaking of bonds in the pentagon-octagon and pentagon-pentagon ring connections, which is not observed for the x-direction. PopG is less stiff than graphene membranes, but the Young's modulus value is only 15 % smaller.  相似文献   
8.
《Physics letters. A》2020,384(27):126674
A nonlinear molecular structural mechanics (MSM) model is proposed in this paper for studying the tensile properties of microtubules (MTs). In the nonlinear MSM models, the interactions between tubulin monomers in MTs are treated as nonlinear axial and torsional springs, whose stiffness coefficients are extracted from all-atom molecular dynamics simulations. The Young's modulus and fracture properties of MTs under tension extracted from the present nonlinear MSM models are found to agree well with the existing simulation and experiment results, which shows the efficiency and accuracy of the proposed nonlinear MSM models. In addition, the nonlinear MSM models are also extended to investigate the tensile properties including Young's modulus and fracture strain of MTs possessing lattice defects. The results obtained from nonlinear MSM models are utilized to develop a predictive equation for quickly predicting the tensile properties of MTs with different lattice defect levels.  相似文献   
9.
Parkinson’s disease (PD) is characterized by the decrease of dopamine (DA) production and release in the substantia nigra and striatum regions of the brain. Transcranial ultrasound has been exploited recently for neuromodulation of the brain in a number of fields. We have stimulated DA release in PC12 cells using low-intensity continuous ultrasound (0.1 W/cm2 − 0.3 W/cm2, 1 MHz), 12 h after exposure at 0.2 W/cm2, 40 s, the amount of DA content eventually increased 78.5% (p = 0.004). After 10-day ultrasonic treatment (0.3 W/cm2, 5 min/d), the DA content in the striatum of PD mice model restored to 81.07% of the control (vs 43.42% in the untreated PD mice model). In addition to this the locomotion activity was restored to the normal level after treatment. We suggest that the low intensity ultrasound-induced DA release can be attributed to a combination of neuron regeneration and improved membrane permeability produced by the mechanical force of ultrasound. Our study indicates that the application of transcranial ultrasound applied below FDA limits, could provide a candidate for relatively safe and noninvasive PD therapy through an amplification of DA levels and the stimulation of dopaminergic neuron regeneration without contrast agents.  相似文献   
10.
Multicomponent polymer blends afford polymeric materials with specific properties for many applications. The effect of different chemical structures on the miscibility and compatibility of polymer blends composed of multicomponent acrylic and styrenic polymers was studied in this research. The influence of each component on the thermal, mechanical, and morphological properties, as well as optical transparency, was analyzed in poly (methyl methacrylate), homopolymer (PMMAh), or copolymer (PMMAe) blends where the minority constituents formed by polystyrene (PS), styrene-acrylonitrile copolymer (SAN) or acrylonitrile-butadiene-styrene terpolymer (ABS). The results showed significant changes in the properties of these mixtures due to the effect of the type of chemical structure and different elastomeric domains of the majority and minority components of polymer blends.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号